Developing Techniques to measure (d,p) on ¹³²Sn Kate Jones Rutgers University ORNL: Jeff Blackmon, Dan Bardayan, Michael Smith, Dan Shapira Rutgers University: Jolie Cizewski, Jeff Thomas Tennessee Tech: Ray Kozub, Caroline Nesaraja University of Tennessee: Z. Ma University of Edinburgh: Phil Woods, Tom Davinson Colorado School of Mines: Uwe Greife, Jake Livesay ORAU: Micah Johnson HRIBF Scientists and technical staff. #### Why study (d,p) reactions for neutron-rich Sn isotopes? ## Nuclear Structure Neutron rich Sn Isotopes What's known about ¹³³Sn? - 4 transitions from 134 In(β n) 133 Sn $^{1)}$ - 1561 keV confirmed in ²⁴⁸Cm SF ²⁾ - Level structure inferred from systematics, transition intensities and SM calcs. Assignments need to be confirmed and spectroscopic factors need to be measured ¹⁾P. Hoff et al. PRL **77** (96) 1020. ²⁾ W. Urban et al. Eur. Phys. J **A5** (99) 239. #### HRIBF Beams Available # The Holifield RIB Facility p, d, or a Fibrous UC₂ production ORIC 25 MV tandem Ion source RIB Mass analysis (300 keV) To experiments #### ²H(¹²⁴Sn,p) kinematics @ 4.25 AMeV DWBA calculations #### ¹²⁴Sn(d,p) test experiment: energy-angle systematics #### ¹²⁴Sn(d,p) test experiment: results #### d(132Sn,p) kinematics @ 4.7 AMeV ### ¹³²Sn(d,p) experiment: detectors Forward angles: high energy protons Backward angles: low energy protons Angular Coverage: 45° to 110° Solid Angle ~ 10% #### Conclusions - Neutron-rich beams produced via fission open up very exciting possibilities for transfer reactions in inverse kinematics. - Test experiment using stable ¹²⁴Sn shows promising results, - Further analysis required _ angular distributions. - Large solid angle array around 90° required to measure with RIB, expect around 10⁵ pps ¹³²Sn.